About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DRC 2017
Conference paper
Glucose sensing using dual-gated BioFETs with 5nm-thick silicon body
Abstract
Field-effect transistors (FETs) are commonly used as affinity-based electrical transducers, known as bioFETs. These sensors are, however, unable to directly detect uncharged molecules such as glucose, necessitating the use of ligand molecules. Further, the change of the electrical signal resulting from the biochemical reactions is often small. In the past decade, significant research was done to enhance the sensitivity of bioFETs using nanowire1 and nanoribbon structures. Recently, dual-gated bioFETs were also shown to exceed the Nernst limit of 59mV/pH using capacitive coupling3,4. Here, we introduce a new ligand molecule for the direct detection of glucose using bioFETs. We demonstrate the amplification of the electrical signal originating from the glucose reaction using our 'engineered' dual-gated bioFETs featuring ultra-thin silicon body and buried oxide of 5nm and 10nm, respectively.