Generation of hard x rays from transition radiation using high-density foils and moderate-energy electrons
Abstract
In experiments using targets consisting of many thin metal foils, we have demonstrated that a narrow, forward-directed cone of transition radiation in the 8- to 60-keV spectral range can be generated by electron beams with moderate energies (between 100 and 500 MeV). The theory suggests that high-density, moderate-atomic-number metals are the optimum foil materials and that the foil thickness can be chosen to maximize photon production within a desired spectral range. The three targets used in the experiments consisted of 10 foils of 1-m-thick gold, 40 foils of 8.5-m stainless steel, and 20 foils of 7.9-m copper. The efficiency with which hard x rays are generated, and the fact that the requisite electron-beam energies are lower by a factor of 5 to 10, make such a radiation source an attractive alternative to synchrotron radiation for applications such as medical imaging, spectroscopy, and microscopy. © 1991 The American Physical Society.