Publication
IMECE 2008
Conference paper

Friction-induced dynamics of axially-moving media in contact with an actively-positioned surface

View publication

Abstract

The dynamics of an axially-moving flexible medium are examined in the context of an application where the medium is partially supported by a frictional surface, that actively-orients itself relative to the direction of transport. The stability and motion of the medium are of interest in a magnetic tape data storage application where the orientation of a sensing surface is continuously altered in order to 'follow' the medium's motion. Moving media that are in contact with such guiding surfaces experience friction excitations induced by the relative motion in addition to what is observed with a stationary guiding surface. Friction-induced bending moments, as well as tension fluctuation beyond the permissible limitsfor the flexible material can erode the potential benefits of such active positioning. This paper describes some of these dynamic phenomena using the simplified example of a planar guiding surface whose orientation is dynamically altered relative to the moving medium. A physical model for the friction-induced excitation of the moving medium is developed, and the dynamics are analyzed for their effect on critical design parameters such as the achievable bandwidth of the active control algorithm, as well as with respect to constraints on the geometry and positioning of the guiding surface. Copyright © 2008 by ASME.

Date

Publication

IMECE 2008

Authors

Share