About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Electron spin resonance study of metal-nitride-silicon structures: Observation of Si dangling bonds with different configurations and trapping properties in silicon nitride
Abstract
Electron spin resonance (ESR) experiments on large area metal-nitride-crystalline silicon (MNS) structures show that the occupation of silicon dangling bonds in silicon nitride can be modulated under the application of a gate bias. The technique applied simultaneously with capacitance-voltage (CV) measurements has been used for the identification of specific electronic transitions. In the case of Si-rich silicon nitride, we demonstrate that the ESR line consists of an inhomogeneous distribution of discrete components at different g-values. Trapping of holes observed under negative bias occurs at a site with a g-value of 2.0052, corresponding to a pure Si environment, while electron trapping observed under positive bias occurs at a site with a g-value of 2.0028, corresponding to a pure N environment. The selectivity of the transitions with respect to the bias leads us to attribute different energy levels to each Si dangling bond configuration. © 1989.