Doubly convolutional neural networks
Abstract
Building large models with parameter sharing accounts for most of the success of deep convolutional neural networks (CNNs). In this paper, we propose doubly con-volutional neural networks (DCNNs), which significantly improve the performance of CNNs by further exploring this idea. In stead of allocating a set of convolutional filters that are independently learned, a DCNN maintains groups of filters where filters within each group are translated versions of each other. Practically, a DCNN can be easily implemented by a two-step convolution procedure, which is supported by most modern deep learning libraries. We perform extensive experiments on three image classification benchmarks: CIFAR-10, CIFAR-100 and ImageNet, and show that DCNNs consistently outperform other competing architectures. We have also verified that replacing a convolutional layer with a doubly convolutional layer at any depth of a CNN can improve its performance. Moreover, various design choices of DCNNs are demonstrated, which shows that DCNN can serve the dual purpose of building more accurate models and/or reducing the memory footprint without sacrificing the accuracy.