About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CLOUD 2021
Conference paper
DLB: Deep Learning Based Load Balancing
Abstract
In this paper, we introduce DLB, a Deep Learning based load Balancing mechanism, to effectively address the data skew problem. The key idea of DLB is to replace hash functions in the load balancing mechanisms with deep learning models, which are trained to be able to map different distributions of workloads and data to the servers in a uniformed manner. We implemented DLB and deployed it on a practical Cloud environment using CloudSim. Experimental results using both synthetic and real-world data sets show that compared with traditional hash function based load balancing methods, DLB is able to achieve more balanced mappings, especially when the workload is highly skewed.