Directed random geometric graphs
Abstract
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as power-law degree distributions and the small-world property. To meet these challenges, we introduce the Directed Random Geometric Graph (DRGG) model, which is an extension of the random geometric graph model. We prove that it is scale-free with respect to the indegree distribution, has binomial outdegree distribution, has a high clustering coefficient, has few edges and is likely small-world. These are some of the main features of aforementioned real-world networks. We also empirically observed that word association networks have many of the theoretical properties of the DRGG model.