About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2019
Conference paper
Depth-first memory-limited and/or search and unsolvability in cyclic search spaces
Abstract
Computing cycle-free solutions in cyclic AND/OR search spaces is an important AI problem. Previous work on optimal depth-first search strongly assumes the use of consistent heuristics, the need to keep all examined states in a transposition table, and the existence of solutions. We give a new theoretical analysis under relaxed assumptions where previous results no longer hold. We then present a generic approach to proving unsolvability, and apply it to RBFAOO and BLDFS, two state-of-the-art algorithms. We demonstrate the performance in domain-independent nondeterministic planning.