Density Propagation and improved bounds on the partition function
Abstract
Given a probabilistic graphical model, its density of states is a distribution that, for any likelihood value, gives the number of configurations with that probability. We introduce a novel message-passing algorithm called Density Propagation (DP) for estimating this distribution. We show that DP is exact for tree-structured graphical models and is, in general, a strict generalization of both sum-product and max-product algorithms. Further, we use density of states and tree decomposition to introduce a new family of upper and lower bounds on the partition function. For any tree decomposition, the new upper bound based on finer-grained density of state information is provably at least as tight as previously known bounds based on convexity of the log-partition function, and strictly stronger if a general condition holds. We conclude with empirical evidence of improvement over convex relaxations and mean-field based bounds.