About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2025
Demo paper
Data Wrangling task automation using Code-Generating Language Models
Abstract
Ensuring data quality in large tabular datasets is a critical challenge, typically addressed through data wrangling tasks. Traditional statistical methods, though efficient, cannot often understand the semantic context and deep learning approaches are resource-intensive, requiring task and dataset-specific training. We present an automated system that utilizes large language models to generate executable code for tasks like missing value imputation, error detection, and error correction. Our system aims to identify inherent patterns in the data while leveraging external knowledge, effectively addressing both memory-dependent and memory-independent tasks.