About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Data-intensive analytics for predictive modeling
Abstract
The Data Abstraction Research Group was formed in the early 1990s, to bring focus to the work of the Mathematical Sciences Department in the emerging area of knowledge discovery and data mining (KD & DM). Most activities in this group have been performed in the technical area of predictive modeling, roughly at the intersection of machine learning, statistical modeling, and database technology. There has been a major emphasis on using business and industrial problems to motivate the research agenda. Major accomplishments include advances in methods for feature analysis, rule-based pattern discovery, and probabilistic modeling, and novel solutions for insurance risk management, targeted marketing, and text mining. This paper presents an overview of the group's major technical accomplishments.