About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PACM HCI
Paper
Corridor-Walker: Mobile Indoor Walking Assistance for Blind People to Avoid Obstacles and Recognize Intersections
Abstract
Navigating in an indoor corridor can be challenging for blind people as they have to be aware of obstacles while also having to recognize the intersections that lead to the destination. To aid blind people in such tasks, we propose Corridor-Walker, a smartphone-based system that assists blind people to avoid obstacles and recognize intersections. The system uses a LiDAR sensor equipped with a smartphone to construct a 2D occupancy grid map of the surrounding environment. Then, the system generates an obstacle-avoiding path and detects upcoming intersections on the grid map. Finally, the system navigates the user to trace the generated path and notifes the user of each intersection’s existence and the shape using vibration and audio feedback. A user study with 14 blind participants revealed that Corridor-Walker allowed participants to avoid obstacles, rely less on the wall to walk straight, and enable them to recognize intersections.