About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Conductance Spectroscopy of Exfoliated Thin Flakes of Nb x Bi 2 Se 3
Abstract
We study unconventional superconductivity in exfoliated single crystals of a promising three-dimensional (3D) topological superconductor candidate, Nb-doped Bi 2 Se 3 through differential conductance spectroscopy and magneto-transport. The strong anisotropy of the critical field along the out-of-plane direction suggests that the thin exfoliated flakes are in the quasi-2D limit. Normal metal-superconductor (NS) contacts with either high or low transparencies made by depositing gold leads onto Nb-doped Bi 2 Se 3 flakes both show significant enhancement in zero bias conductance and coherence dips at the superconducting energy gap. Such behavior is inconsistent with conventional Blonder-Tinkham-Klapwijk theory. Instead, we discuss how our results are consistent with p-wave pairing symmetry, supporting the possibility of topological superconductivity in Nb-doped Bi 2 Se 3 . Finally, we observe signatures of multiple superconducting energy gaps, which could originate from multiple Fermi surfaces reported earlier in bulk crystals.