Publication
IJCAI 2024
Conference paper

Computational Complexity of Verifying the Group No-show Paradox

Abstract

The (group) no-show paradox refers to the undesirable situation where a group of agents have incentive to abstain from voting to make the winner more favorable to them. To understand whether it is a critical concern in practice, in this paper, we take a computational approach by examining the computational complexity of verifying whether the group no-show paradox exists given agents’ preferences and the voting rule. We prove that, unfortunately, the verification problem is NP-hard to compute for some commonly studied voting rules, i.e., Copeland, maximin, single transferable vote, and all Condorcetified positional scoring rules such as Black’s rule. We propose integer linear programming-based algorithms and a search-based algorithm for the verification problem for different voting rules. Experimental results on synthetic data illustrate that the former is efficient when the number of unique rankings in a profile is not too high, and the latter is efficient for a small number of agents. With the help of these algorithms, we observe that group no-show paradoxes rarely occur in real-world data.