About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Small
Paper
Complex Nucleic Acid Hybridization Reactions inside Capillary-Driven Microfluidic Chips
Abstract
Nucleic acid hybridization reactions play an important role in many (bio)chemical fields, for example, for the development of portable point-of-care diagnostics, and often such applications require nucleic acid-based reaction systems that ideally run without enzymes under isothermal conditions. The use of novel capillary-driven microfluidic chips to perform two isothermal nucleic acid hybridization reactions, the simple opening of molecular beacon structures and the complex reaction cascade of a clamped-hybridization chain reaction (C-HCR), is reported here. For this purpose, reagents are arranged in a self-coalescence module (SCM) of a passive silicon microfluidic chip using inkjet spotting. The SCM occupies a footprint of ≈7 mm2 of a ≈0.4 × 2 cm2 microfluidic chip. By means of fluorophore-labeled DNA probes, the hybridization reactions can be analyzed in just ≈2 min and using only ≈3 µL of the sample. Furthermore, the SCM chip offers a variety of reagent delivery options, allowing, for example, the influence of the initiator concentration on the kinetics of C-HCR to be investigated systematically with minimal sample and time requirements. These results suggest that self-powered microfluidic chips equipped with a SCM provide a powerful platform for performing and investigating complex reaction systems.