About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Classification by discriminative regularization
Abstract
Classification is one of the most fundamental problems in machine learning, which aims to separate the data from different classes as far away as possible. A common way to get a good classification function is to minimize its empirical prediction loss or structural loss. In this paper, we point out that we can also enhance the discriminality of those classifiers by further incorporating the discriminative information contained in the data set as a prior into the classifier construction process. In such a way, we will show that the constructed classifiers will be more powerful, and this will also be validated by the final empirical study on several benchmark data sets. Copyright © 2008, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Related
Conference paper
Reshaping Diverse Planning
Conference paper
Do not have enough data? Deep learning to the rescue!
Conference paper