About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ITS
Paper
City-Wide Traffic Flow Estimation from a Limited Number of Low-Quality Cameras
Abstract
We present a new approach to lightweight intelligent transportation systems. Our approach does not rely on traditional expensive infrastructures, but rather on advanced machine learning algorithms. It takes images from traffic cameras at a limited number of locations and estimates the traffic over the entire road network. Our approach features two main algorithms. The first is a probabilistic vehicle counting algorithm from low-quality images that falls into the category of unsupervised learning. The other is a network inference algorithm based on an inverse Markov chain formulation that infers the traffic at arbitrary links from a limited number of observations. We evaluated our approach on two different traffic data sets, one acquired in Nairobi, Kenya, and the other in Kyoto, Japan.