Takayuki Osogami
QEST 2007
The Markov chain is a convenient tool to represent the dynamics of complex systems such as traffic and social systems, where probabilistic transition takes place between internal states. A Markov chain is characterized by initial-state probabilities and a state-transition probability matrix. In the traditional setting, a major goal is to study properties of a Markov chain when those probabilities are known. This paper tackles an inverse version of the problem: we find those probabilities from partial observations at a limited number of states. The observations include the frequency of visiting a state and the rate of reaching a state from another. Practical examples of this task include traffic monitoring systems in cities, where we need to infer the traffic volume on single link on a road network from a limited number of observation points. We formulate this task as a regularized optimization problem, which is efficiently solved using the notion of natural gradient. Using synthetic and real-world data sets including city traffic monitoring data, we demonstrate the effectiveness of our method.
Takayuki Osogami
QEST 2007
Tsuyoshi Idé
ICDM 2005
Takayuki Osogami
ACM TOMACS
Tsuyoshi Idé, Sinem Guven, et al.
IM 2015