Hammad Ayyubi, Rahul Lokesh, et al.
ACL 2023
The increasing reliance on large language models (LLMs) in academic writing has led to a rise in plagiarism. Existing AI-generated text classifiers have limited accuracy and often produce false positives. We propose a novel approach using natural language processing (NLP) techniques, offering quantifiable metrics at both sentence and document levels for easier interpretation by human evaluators. Our method employs a multi-faceted approach, generating multiple paraphrased versions of a given question and inputting them into the LLM to generate answers. By using a contrastive loss function based on cosine similarity, we match generated sentences with those from the student’s response. Our approach achieves up to 94% accuracy in classifying human and AI text, providing a robust and adaptable solution for plagiarism detection in academic settings. This method improves with LLM advancements, reducing the need for new model training or reconfiguration, and offers a more transparent way of evaluating and detecting AI-generated text.
Hammad Ayyubi, Rahul Lokesh, et al.
ACL 2023
Binchi Zhang, Yushun Dong, et al.
ICLR 2024
Natalia Martinez Gil, Kanthi Sarpatwar, et al.
NeurIPS 2023
Jatin Arora, Youngja Park
ACL 2023