About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Bayesian Self-Optimization for Telescoped Continuous Flow Synthesis
Abstract
The optimization of multistep chemical syntheses is critical for the rapid development of new pharmaceuticals. However, concatenating individually optimized reactions can lead to inefficient multistep syntheses, owing to chemical interdependencies between the steps. Herein, we develop an automated continuous flow platform for the simultaneous optimization of telescoped reactions. Our approach is applied to a Heck cyclization-deprotection reaction sequence, used in the synthesis of a precursor for 1-methyltetrahydroisoquinoline C5 functionalization. A simple method for multipoint sampling with a single online HPLC instrument was designed, enabling accurate quantification of each reaction, and an in-depth understanding of the reaction pathways. Notably, integration of Bayesian optimization techniques identified an 81 % overall yield in just 14 h, and revealed a favorable competing pathway for formation of the desired product.