Publication
Speech Communication
Paper
Automatic transcription of Broadcast News
Abstract
This paper describes the IBM approach to Broadcast News (BN) transcription. Typical problems in the BN transcription task are segmentation, clustering, acoustic modeling, language modeling and acoustic model adaptation. This paper presents new algorithms for each of these focus problems. Some key ideas include Bayesian information criterion (BIC) (for segmentation, clustering and acoustic modeling) and speaker/cluster adapted training (SAT/CAT). © 2002 Elsevier Science B.V. All rights reserved.