About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
An efficient framework for multi-dimensional tuning of high performance computing applications
Abstract
Deploying an application onto a target platform for high performance oftentimes demands manual tuning by experts. As machine architecture gets increasingly complex, tuning becomes even more challenging and calls for systematic approaches. In our earlier work we presented a prototype that combines efficiently expert knowledge, static analysis, and runtime observation for bottleneck detection, and employs refactoring and compiler feedback for mitigation. In this study, we develop a software tool that facilitates \emph{fast} searching of bottlenecks and effective mitigation of problems from major dimensions of computing (e.g., computation, communication, and I/O). The impact of our approach is demonstrated by the tuning of the LBMHD code and a Poisson solver code, representing traditional scientific codes, and a graph analysis code in UPC, representing emerging programming paradigms. In the experiments, our framework detects with a single run of the application intricate bottlenecks of memory access, I/O, and communication. Moreover, the automated solution implementation yields significant overall performance improvement on the target platforms. The improvement for LBMHD is up to 45%, and the speedup for the UPC code is up to 5. These results suggest that our approach is a concrete step towards systematic tuning of high performance computing applications. © 2012 IEEE.