Leo Liberti, James Ostrowski
Journal of Global Optimization
A "scalar" flowchart scheme, i.e. one with a single begin "instruction" is reducible iff its underlying flowgraph is reducible in the sense of Cocke and Allen or Hecht and Ullman. We characterize the class of reducible scalar flowchart schemes as the smallest class containing certain members and closed under certain operations (on and to flowchart schemes). These operations are "semantically meaningful' in the sense tha operations of the same form are meaningful for "the" functions (or partial functions) computed by interpreted flowchart schemes; moreover, the schemes and the functions "are related by a homomorphism." By appropriately generalizing "flowgraph" to (possibly) several begins (i.e. entries) we obtain a class of reducible "vector" flowchart schemes which can be characterized in a manner analogous to the scalar case but involving simpler more basic operations (which are also semantically meaningful). A significant side effect of this semantic viewpoint is the treatment of multi-exit flowchart schemes on an equal footing with single exit ones. © 1979.
Leo Liberti, James Ostrowski
Journal of Global Optimization
Israel Cidon, Leonidas Georgiadis, et al.
IEEE/ACM Transactions on Networking
J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007