Publication
IEEE TSP
Paper

A nonlinear method for robust spectral analysis

View publication

Abstract

A nonlinear spectral analyzer, called the Lp-norm periodogram, is obtained by replacing the least-squares criterion with an Lp -norm criterion in the regression formulation of the ordinary periodogram. In this paper, we study the statistical properties of the Lp -norm periodogram for time series with continuous and mixed spectra. We derive the asymptotic distribution of the Lp-norm periodogram and discover an important relationship with the so-called fractional autocorrelation spectrum that can be viewed as an alternative to the power spectrum in representing the serial dependence of a random process in the frequency domain. In comparison with the ordinary periodogram (p=2), we show that by varying the value of p in the interval (1,2) the Lp-norm periodogram can strike a balance between robustness against heavy-tailed noise, efficiency under regular conditions, and spectral leakage for time series with mixed spectra. We also show that the Lp-norm periodogram can detect serial dependence of uncorrelated non-Gaussian time series that cannot be detected by the ordinary periodogram. © 2006 IEEE.

Date

Publication

IEEE TSP

Authors

Share