Publication
IJDSN
Paper

Weight-based clustering decision fusion algorithm for distributed target detection in wireless sensor networks

View publication

Abstract

We use a great deal of wireless sensor nodes to detect target signal that is more accurate than the traditional single radar detection method. Each local sensor detects the target signal in the region of interests and collects relevant data, and then it sends the respective data to the data fusion center (DFC) for aggregation processing and judgment making whether the target signal exists or not. However, the current judgment fusion rules such as Counting Rule (CR) and Clustering-Counting Rule (C-CR) have the characteristics on high energy consumption and low detection precision. Consequently, this paper proposes a novel Weight-based Clustering Decision Fusion Algorithm (W-CDFA) to detect target signal in wireless sensor network. It first introduces the clustering method based on tree structure to establish the precursor-successor relationships among the clusters in the region of interests and then fuses the decision data along the direction from the precursor clusters to the successor clusters gradually, and DFC (i.e., tree root) makes final determination by overall judgment values from subclusters and ordinary nodes. Simulation experiments show that the fusion rule can obtain more satisfactory system level performance at the environment of low signal to noise compared with CR and C-CR methods. © 2013 Haiping Huang et al.

Date

Publication

IJDSN

Authors

Share