About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IMC 2011
Conference paper
vPF-RING: Towards wire-speed network monitoring using virtual machines
Abstract
The demand of highly flexible and easy to deploy network monitoring systems has pushed companies toward software based network monitoring probes implemented with commodity hardware rather than with expensive and highly specialized network devices. Deploying software probes under virtual machines executed on the same physical box is attractive for reducing deployment costs and for simplifying the management of advanced network monitoring architectures built on top of heterogeneous monitoring tools (i.e. Intrusion Detection Systems and Performance Monitoring Systems). Unfortunately, software probes are usually not able to meet the performance requirements when deployed in virtualized environments as virtualization introduces severe performance bottlenecks when performing packet capture, which is the core activity of passive network monitoring systems. This paper covers the design and implementation of vPF-RING, a novel framework for efficiently capturing packets on virtual machines running on commodity hardware. This solution allows network administrators to exploit the benefits of virtualization such as reduced costs and centralized administration, while preserving the ability to capture packets at wire speed even when deploying applications in virtual machines. The validation process has demonstrated that this solution can be profitably used for multi-gigabit network monitoring, paving the way to low-cost virtualized monitoring systems. © 2011 ACM.