True 3-D displays for avionics and mission crewstations
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
The optical study of trivalent 3d transition-metal-oxide compounds (RMO3) with the perovskitelike structure has revealed the variation of their electronic structure with the 3d element (M) as well as the A-site rare-earth element (R). The crossover of the gap nature from the Mott type to charge-transfer (CT) type with increasing atomic number of M is observed to occur around M=Cr. The variation of Mott and CT gaps with M species is quantitatively consistent with the tendency expected from an ionic model. However, for the low-energy electronic structures for the narrow-gap (or metallic) compounds (M=Ti,Co,Ni), the effects of the M-3dO-2p hybridization must be included. © 1993 The American Physical Society.
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
L.K. Wang, A. Acovic, et al.
MRS Spring Meeting 1993
Thomas E. Karis, C. Mark Seymour, et al.
Rheologica Acta
Ranulfo Allen, John Baglin, et al.
J. Photopolym. Sci. Tech.