About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Update on k-truss Decomposition on GPU
Abstract
In this paper, we present an update to our previous submission on k-truss decomposition from Graph Challenge 2018. For single k k-truss implementation, we propose multiple algorithmic optimizations that significantly improve performance by up to 35.2x (6.9x on average) compared to our previous GPU implementation. In addition, we present a scalable multi-GPU implementation in which each GPU handles a different 'k' value. Compared to our prior multi-GPU implementation, the proposed approach is faster by up to 151.3x (78.8x on average). In case when the edges with only maximal k-truss are sought, incrementing the 'k' value in each iteration is inefficient particularly for graphs with large maximum k-truss. Thus, we propose binary search for the 'k' value to find the maximal k-truss. The binary search approach on a single GPU is up to 101.5 (24.3x on average) faster than our 2018 k-truss submission. Lastly, we show that the proposed binary search finds the maximum k-truss for 'Twitter' graph dataset having 2.8 billion bidirectional edges in just 16 minutes on a single V100 GPU.