About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Understanding Patterns of Terrorism in India (2007-2017) Using Artificial Intelligence Machine Learning
Abstract
With the tremendous increases in Artificial Intelligence (AI) computing technology capabilities, applications of AI approaches to terrorist data can yield useful insights into the interaction of terrorists, governance, and geography. There have been few applications of machine learning techniques to understand patterns of terrorist behavior. Specifically, little work has been done to analyze terrorism patterns in India, which experiences one of the world's highest levels of terrorism. We apply "shallow AI models" to a decade of terrorist incidents in India. We show that AI approaches generate highly accurate models that predict levels of violent incident behavior across locations from a history of past attacks, and identify the principal factors correlated with a location being targeted. This study provides an example of socially-relevant AI research, expands our understanding of the dynamics of terrorism in a way that can help to shape counterterrorism policy and contributes to our greater recognition of the interwoven relationship of technology, knowledge, and society.