Publication
Journal of Computer and System Sciences
Paper

Unbounded fan-in circuits and associative functions

View publication

Abstract

The computation of finite semigroups using unbounded fan-in circuits are considered. There are constant-depth, polynomial size circuits for semigroup product iff the semigroup does not contain a nontrivial group as a subset. In the case that the semigroup in fact does not contain a group, then for any primitive recursive function f circuits of size O(nf-1(n)) and constant depth exist for the semigroup product of n elements. The depth depends upon the choice of the primitive recursive function f. The circuits not only compute the semigroup product, but every prefix of the semigroup product. A consequence is that the same bounds apply for circuits computing the sum of two n-bit numbers. © 1985.

Date

Publication

Journal of Computer and System Sciences

Authors

Topics

Share