About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Twitter Can Predict Your Next Place of Visit
Abstract
The present work focuses on predicting users' next place of visit using their past tweets. We hypothesize that tweets of the person have predictive power on his location and therefore can be used to predict his next place of visit. This problem is important for location based advertising and recommender based services. To predict the next place of visit, we calculate the probabilities of visiting different types of places using bank of binary classifiers and Markov models. More specifically, we train bank of binary classifiers on past tweets and calculated the probabilities of visiting next places. Since bank of binary classifiers is based on a bag-of-words model, to account for time of last visited place and place itself, we built Markov models for different time duration to calculate probabilities of visiting next place. Empirical evaluation shows that by combining the probabilities obtained from bank of binary classifiers and Markov models the accuracy of predicting next place increased from 65% to 80%.