Towards Pathway Variation Identification: Aligning Patient Records with a Care Pathway
Abstract
A Care Pathway is a knowledge-centric process to guide clinicians to provide evidence-based care to patients with specific conditions. One existing problem for care pathways is that they often fail to reflect the best clinical practice as a result of not being adequately updated. A better understanding of the gaps between a care pathway and real practice requires aligning patient records with the pathway. Patient records are unlabeled in practice making it difficult to align them with a care pathway which is inherently complex due to its representation as a hierarchical and declarative process model (HDPM). This paper proposes to solve this problem by developing a Hierarchical Markov Random Field (HMRF) method so that a set of patient records can best fit a given care pathway. We validate the effectiveness of the method with experiments on both synthesized data and real clinical data.