About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2019
Conference paper
Topological data analysis of decision boundaries with application to model selection
Abstract
We propose the labeled Cech complex, the plain labeled Vietoris-Rips complex, and the locally scaled labeled Vietoris-Rips complex to perform persistent homology inference of decision boundaries in classification tasks. We provide theoretical conditions and analysis for recovering the homology of a decision boundary from samples. Our main objective is quantification of deep neural network complexity to enable matching of datascts to pre-trained models to facilitate the functioning of AI marketplaces; we report results for experiments using MNIST, FashionMNIST, and CI-FAR10.