About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
This paper describes a semi-supervised algorithm for single class learning with very few examples. The problem is formulated as a hierarchical latent variable model which is clipped to ignore classes not of interest. The model is trained using a multistage EM (msEM) algorithm. The msEM algorithm maximizes the likelihood of the joint distribution of the data and latent variables, under the constraint that the distribution of each layer is fixed in successive stages. We demonstrate that with very few positive examples, the algorithm performs better than training all layers in a single stage. We also show that the latter is equivalent to training a single layer model with corresponding parameters. The performance of the algorithm was verified on several real-world information extraction tasks.