About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2017
Conference paper
Tone analyzer for online customer service: An unsupervised model with interfered training
Abstract
Emotion analysis of online customer service conservation is important for good user experience and customer satisfaction. However, conventional metrics do nott this application scenario. In this work, by collecting and labeling online conversations of customer service on Twitter, we identify 8 new metrics, named as tones, to describe emotional information. To better interpret each tone, we extend the Latent Dirichlet Allocation (LDA) model to Tone LDA (T-LDA). In T-LDA, each latent topic is explicitly associated with one of three semantic categories, i.e., tone-related, domain-specific and auxiliary. By integrating tone label into learning, T-LDA can interfere the original unsupervised training process and thus is able to identify representative tone-related words. In evaluation, T-LDA shows better performance than baselines in predicting tone intensity. Also, a case study is conducted to analyze each tone via T-LDA output.