About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
The role of copper-phthalocyanine in multilayer organic LEDs based on small molecules
Abstract
The role of copper-phthalocyanine (CuPc) as intermediate layer between the anode and the hole-transport layer in multilayer organic light-emitting devices (OLEDs) was studied. The OLEDs consisted of CuPc, N,N′-di(naphtalene-1-yl)-N,N′-diphenyl-benzidine (NPB) as hole-transport layer and tris-(8-hydroxyquinolinato)-aluminum (Alq3) as electron-transport and emitting layer sandwiched between a high-work-function metal and a semi-transparent calcium cathode. A combinatorial approach that allows the simultaneous fabrication of 10 × 10 individual devices was used to vary the thicknesses of CuPc and NPB over a broad range from 0 to 45 nm and from 10 to 100 nm, respectively. Systematic current-voltage and impedance measurements revealed a redistribution of the internal electric field of the CuPc/NPB/Alq3 three-layer structure compared to that of the NPB/Alq3 bilayer OLED. It was demonstrated that the hole transport is mainly controlled by the internal energy barrier at the CuPc/NPB interface. The fact that CuPc strongly impedes hole injection into NPB also has a significant impact on the frequency-dependent behavior of the capacitance, especially the cutoff frequency.
Related
Conference paper
Unassisted true analog neural network training chip
Conference paper