About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EuroPar 2016
Conference paper
The Impact of Voltage-Frequency Scaling for the Matrix-Vector Product on the IBM POWER8
Abstract
The physical limitations of CMOS miniaturization have promoted understanding the interplay between performance and energy into a primary challenge. In this paper we contribute towards this goal by assessing the effect of voltage and frequency scaling (VFS) on the energy consumption of the dense and sparse matrix-vector products. The optimization of the sparse kernel, from the perspective of both performance and energy efficiency, is especially difficult due to its irregular memory access pattern, but the potential benefits are remarkable because of its varied applications. Our experiments with a small synthetic training set show that it is possible to build a general classification of sparse matrices that governs the optimal VFS level from the point of view of energy efficiency. More importantly, this characterization can be leveraged to tune VFS for a major portion of the University of Florida Matrix Collection, when executed on the IBM Power8, yielding significant gains with respect to a (power-hungry) configuration that simply favours performance.