About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDM 2019
Tutorial
Table Extraction and Understanding for Scientific and Enterprise Applications
Abstract
Valuable high-precision data are often published in the form of tables in both scientific and business documents. While humans can easily identify, interpret and contextualize tables, developing general-purpose automated techniques for extraction of information from tables is difficult due to the wide variety of table formats employed across corpora. To extract useful data from tables, data cells must be correctly extracted and linked to all relevant headers, units of measure and in-text references. Table extraction involves identifying the border and cell structure for each document table, while table understanding provides context by linking cells with semantic information inside and outside the table, such as row and column headers, footnotes, titles, and references in surrounding text. The objective of this tutorial is to provide a detailed synopsis of existing approaches for table extraction and understanding, highlight open research problems, and provide an overview of potential applications.