Alan C. Luntz, Richard G. Brewer
The Journal of Chemical Physics
A novel form of laser frequency switching is devised which extends coherent optical transient studies to a 100-psec time scale. The technique incorporates a traveling-wave electro-optic element which imposes with unit efficiency a uniform time-varying phase and thus a frequency shift on a cw laser beam. In contrast to earlier optical traveling-wave modulators which are driven by a microwave oscillator, here the optical phase change is induced rapidly and easily by a dc electric field pulse that propagates in a microwave guide either parallel or antiparallel to the light wave. This advance enables optical free-induction decay (FID) studies on a subnanosecond time scale and reveals such new features as a rapid first-order FID that dephases with the inhomogeneous dephasing time T2*. The well-known nonlinear FID can interfere with the first-order component at short times and decays over the much longer period T2[1+(1+χ2T1T2)12], where χ is the Rabi frequency. A complete analytical expression is derived for optical FID of a transition subject to homogeneous and inhomogeneous broadening and supports detailed observations of the sodium D1 line. © 1979 The American Physical Society.
Alan C. Luntz, Richard G. Brewer
The Journal of Chemical Physics
Ralph G. DeVoe, Richard G. Brewer
Physical Review Letters
Axel Schenzle, N.C. Wong, et al.
Physical Review A
Ralph G. DeVoe
Physical Review A - AMO