About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2024
Paper
Structured Chain-of-Thought Prompting for Few-Shot Generation of Content-Grounded QA Conversations
Abstract
We introduce a structured chain-of-thought (SCoT) prompting approach to generating content-grounded multi-turn question-answer conversations using a pre-trained large language model(LLM). Atthecoreofourproposal is a structured breakdown of the complex task into a number of states in a state machine, so that actions corresponding to various subtasks, e.g., content reading and utterance generation, can be executed in their own dedicated states. Each state leverages a unique set of resources including prompts and (optionally) additional tools to augment the generation process. Our experimental results show that SCoT prompting with designated states for hallucination mitigation increases agent faithfulness to grounding documents by up to 16.8%. When used as training data, our open-domain conversations synthesized from only 6 Wikipedia-based seed demonstrations train strong conversational QA agents; in out-of-domain evaluation, for example, we observe improvements of up to 13.9% over target domain gold data when the latter is augmented with our generated examples.