Publication
Advances in Computational Mathematics
Paper

Spectral factorization of Laurent polynomials

View publication

Abstract

We analyse the performance of five numerical methods for factoring a Laurent polynomial, which is positive on the unit circle, as the modulus squared of a real algebraic polynomial. It is found that there is a wide disparity between the methods, and all but one of the methods are significantly influenced by the variation in magnitude of the coefficients of the Laurent polynomial, by the closeness of the zeros of this polynomial to the unit circle, and by the spacing of these zeros. © J.C. Baltzer AG, Science Publishers.