Aditya Malik, Nalini Ratha, et al.
CAI 2024
Evaluating the performance of causal discovery algorithms that aim to find causal relationships between time-dependent processes remains a challenging topic. In this paper, we show that certain characteristics of datasets, such as varsortability (Reisach et al. 2021) and -sortability (Reisach et al. 2023), also occur in datasets for autocorrelated stationary time series. We illustrate this empirically using four types of data: simulated data based on SVAR models and Erdős-Rényi graphs, the data used in the 2019 causality-for-climate challenge (Runge et al. 2019), real-world river stream datasets, and real-world data generated by the Causal Chamber of (Gamella et al. 2024). To do this, we adapt var- and -sortability to time series data. We also investigate the extent to which the performance of score-based causal discovery methods goes hand in hand with high sortability. Arguably, our most surprising finding is that the investigated real-world datasets exhibit high varsortability and low -sortability indicating that scales may carry a significant amount of causal information.
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Leonid Karlinsky, Joseph Shtok, et al.
CVPR 2019
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A