About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SCC 2022
Short paper
SimPO: Simultaneous Prediction and Optimization
Abstract
Many machine learning (ML) models are integrated within the context of a larger system as part of a key component for decision-making processes. Concretely, predictive ML models are often employed in estimating the parameters for the input values that are utilized for optimization models as isolated processes. Traditionally, the predictive ML models are built first, then the model outputs are used to generate decision values separately. However, it is often the case that the prediction values that are trained independently of the optimization process produce sub-optimal solutions. In this paper, we propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework. This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function, which is optimized end-to-end directly through gradient-based methods.