Easwar Magesan, Jay M. Gambetta, et al.
Physical Review Letters
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%. © 2011 American Physical Society.
Easwar Magesan, Jay M. Gambetta, et al.
Physical Review Letters
Baleegh Abdo, Nicholas T. Bronn, et al.
Nature Communications
Nicholas T. Bronn, Vivekananda P. Adiga, et al.
Quantum Science and Technology
Nicholas T. Bronn, Baleegh Abdo, et al.
WOLTE 2016