Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
It is becoming increasingly important for multimedia databases to provide capabilities for content-based retrieval of composite objects. Composite objects consist of several simple objects which have feature, spatial, temporal, semantic attributes, and spatial and temporal relationships between them. A content-based composite object query is satisfied by evaluating a program of content-based rules (i.e., color, texture), spatial and temporal rules (i.e., east, west), fuzzy conjunctions (i.e., appears similar AND is spatially near) and database lookups (i.e., semantics). We propose a new sequential processing method for efficiently computing content-based queries of composite objects. The proposed method evaluates the composite object queries by (1) defining an efficient ordering of the sub-goals of the query, which involve spatial, temporal, content-based and fuzzy rules, (2) developing a query block management strategy for generating, evaluating, and caching intermediate sub-goal results, and (3) conducting a best-first dynamic programming-based search with intelligent back-tracking. The method is guaranteed to find the optimal answer to the query and reduces the query time by avoiding the exploration of unlikely candidates.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023