Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films
Abstract
Monodisperse lead telluride (PbTe) nanocrystals ranging from ∼4 to 10 nm in diameter are synthesized to provide quantum dot building blocks for the design of novel materials for electronic applications. Two complementary synthetic approaches are developed that enable either (1) isolation of small quantities of nanocrystals of many different sizes or (2) the production of up to 10 g of a single nanocrystal size. PbTe nanocrystals are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and optical absorption. Assembly of PbTe nanocrystals is directed to prepare nanocrystal solids that display either short-range (glassy solids) or long-range (superlattices) packing order by varying deposition conditions. Film order and average interparticle spacing are analyzed with grazing-incidence small-angle X-ray scattering (GISAXS) and high-resolution scanning electron microscopy (HRSEM). We perform the first optical and electronic studies of PbTe solids and demonstrate that chemical activation of these films enhances conductivity by ∼9-10 orders of magnitude while preserving their quantum dot nature. © 2006 American Chemical Society.