About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COMSNETS 2015
Conference paper
RTChoke: Efficient real-time traffic chokepoint detection and monitoring
Abstract
We present a novel efficient adaptive sensing and monitoring solution for a system of mobile sensing devices that support traffic monitoring applications. We make a key observation that much of the variance in commute times arises at a few congestion hotspots, and a reliable estimate of congestion can be obtained by selectively monitoring congestion just at these hotspots. We design a smartphone application and a back-end system that automatically identifies and monitors congestion hotspots. The solution has low resource footprint in terms of both battery usage on the sensing devices and the network bytes used for uploading data. When a user is not inside any hotspot zone, adaptive sampling conserves battery power and reduces network usage, while ensuring that any new hotspots can be effectively identified. Our results show that our application consumes 40- 80%less energy than a periodic sampling system for different routes in our experiments, with similar accuracy of congestion information. The system can be used for a variety of applications such as automatic congestion alerts to users approaching hotspots, reliable end-to-end commute time estimates and effective alternate route suggestions.