About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2017
Conference paper
Robust partially-compressed least-squares
Abstract
Randomized matrix compression techniques, such as the Johnson-Lindenstrauss transform, have emerged as an effective and practical way for solving large-scale problems efficiently. With a focus on computational efficiency, however, forsaking solutions quality and accuracy becomes the tradeoff. In this paper, we investigate compressed least-squares problems and propose new models and algorithms that address the issue of error and noise introduced by compression. While maintaining computational efficiency, our models provide robust solutions that are more accurate than those of classical compressed variants.We introduce tools from robust optimization together with a form of partial compression to improve the error-time trade-offs of compressed least-squares solvers. We develop an efficient solution algorithm for our Robust Partially-Compressed (RPC) model based on a reduction to a one-dimensional search.