About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Cloud developers have to build applications that are resilient to failures and interruptions. We advocate for a fault-Tolerant programming model for the cloud based on actors, retry orchestration, and tail calls. This model builds upon persistent data stores and message queues readily available on the cloud. Retry orchestration not only guarantees that (1) failed actor invocations will be retried but also that (2) completed invocations are never repeated and (3) it preserves a strict happen-before relationship across failures within call stacks. Tail calls can break complex tasks into simple steps to minimize re-execution during recovery. We review key application patterns and failure scenarios. We formalize a process calculus to precisely capture the mechanisms of fault tolerance in this model. We briefly describe our implementation. Using an application inspired by a typical enterprise scenario, we validate the functional correctness of our implementation and assess the impact of fault preparedness and recovery on performance.