About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICSLP 2002
Conference paper
Reducing the footprint of the IBM trainable speech synthesis system
Abstract
This paper presents a novel approach for concatenative speech synthesis. This approach enables reduction of the dataset size of a concatenative text-to-speech system, namely the IBM trainable speech synthesis system, by more than an order of magnitude. A spectral acoustic feature based speech representation is used for computing a cost function during segment selection as well as for speech generation. Initial results indicate that even with a dataset size of a few megabytes it is possible to achieve quality which is significantly higher than existing small footprint formant based synthesizers.